噴霧の微粒化・燃焼初期過程の詳細解析 および実用シミュレーションへの展望

<u>新城淳史</u> JAXA数値解析グループ 燃焼・乱流セクション

Jul 13, 2012

Background

- Liquid sprays for various engineering applications
 - Our main interest is in liquid-fuel engines

Rocket engine

Automotive engine

Jet engine

- Others..

Spray

Agriculture

Recent research topics

Shinjo & Umemura, IJMF 2010, 2011, PCI 2011

Shinjo & Umemura, PCI (in press)

Spray simulation issues

Secondary Breakup

1. Liquid atomization study

- High-speed Diesel-like fuel injection -

Objectives and approach

- Investigate the primary breakup mechanisms
- Obtain modeling insight

- Very detailed numerical simulation is used
 - No breakup model is employed
- Navier-Stokes eqs. + surface tension
 - Direct interface capturing by level-set/VOF method
 - Surface tension by CSF method

Recent primary atomization research

 High resolution data are becoming available to understand the underlying physics

(d) $q = 30, We_{cf} = 100, We_{liq} = 3000$

Liquid jet simulation in cross flow (Left: Pai et al. 2008, right: Herrmann 2010)

Exp photo of spray front (Wang et al. 2008)

Our simulation of Diesel-like jet

Numerical methods

- Euler-Euler two-phase flow
 - 3D Navier-Stokes equations
 - Gas and liquid are Newtonian fluids
 - Pressure by Poisson equation
 - Advection by CIP method
 - Interface capturing by Level-Set method with MARS (VOF) method
 - Surface tension by CSF method

Flow conditions

- Liquid jet from a round nozzle
 - Three injection velocities
 - No excitation at the nozzle is given to exclude nozzle effects such as cavitation or liquid flow turbulence.

= Atomization	is	initiated	from	jet	front o	only
---------------	----	-----------	------	-----	---------	------

Case	Nozzle diameter D=2a	Ambient pressure <i>p</i>	Gas density ρ_g	Liquid density ρ_l	Liquid viscosity μ_l	Surface tension coefficient σ	Liquid velocity $U_l = U$	Gas velocity U_g	Bulk liquid Reynolds number	Bulk liquid Weber number
1							30m/s		440	1270
2	2 3 0.1mm 3MPa 4				2870e-6 Pa·s	20.0- 2	50m/s		740	3530
3		34.5kg/m ³	848kg/m ³		30.0e-3 N/m		0m/s	1470		
4					957e-6 Pa∙s		100m/s		4410	14100

 We_{bulk} Re_{bulk} $= \rho U a / \mu \qquad = \rho U^2 a / \sigma$

Computational resources

Liquid jet from a round nozzle (D=0.1mm)
 – JAXA JSS system

Case	# of grid points	Spatial resolution	# of CPUs (# of cores)	Computational time (Real clock time)	
1	0.4 billion	1.5µm	320 (1280)	750hrs	
2	1.2 billion	0.75µm	480 (1920)	700hrs	
3	6 billion	0.35µm	1440 (5760)	400hrs	
4	6 billion	0.35µm	640 (2560)	1100hrs	

One of the world's largest computations at this time in this field.

(1) Overview

- Ligament/droplet scale
 - As the liquid Weber number increases, generated structures get smaller

Case 1 (30m/s)

Case 2 (50m/s)

Case 3 (100m/s)

Ligament formation from front

Ligament formation from jet core

Ligament formation

- From spray front
 - Circumferential and lateral vortices create ligaments formation
- From jet core
 - A hole forms on crest structure and multiple ligaments develop.

Ligament condition: We_g~O(1)

$$We_{g} = \rho_{g} \left| \mathbf{u}_{l} - \mathbf{u}_{g} \right|^{2} a_{L} / \sigma$$

=(Aerodynamic force)/(su

 a_L : ligament radius

=(Aerodynamic force)/(surface tension)

Droplet formation

(2) Head atomization loop

From theoretical consideration,

$$l = \left[\left(V_{outer(inner)} + V_{sheet} \right) / 2 \right] \tau$$
$$\left(V_{sheet} - U_c \right) \tau = \left(V_{sheet} - \sqrt{\sigma / \rho_l a_{sheet}} \right) \tau = \lambda$$

CFD result satisfies the above relations

$$\hat{V}_{outer(inner)} = 1.0, \quad \hat{V}_{sheet} = 0.5,$$

 $\hat{\lambda} = 0.37, \quad l = 0.6, \quad a_{sheet} = 0.04,$
 $\hat{\tau} = 0.8$

 V_* : Edge velocity (fixed on spray front) a_{sheet} : Thickness at edge l: Spatial interval σ : Surface tension λ : Wavelength on edge R: Edge radius L_2 : Recirculation zone length τ . Time interval of atomization

(3) Liquid core surface instability

• High-speed liquid jet

U=100m/s, t=8.27

2D (axi-symmetric) patterns

U=100m/s, t=15.47

140.0

3D patterns

Initial 2D patterns and TS mode

The results suggest that the initial 2D surface patterns are generated by TS waves.

Vortex structures

Similar to wall turbulence transition!

*True especially for highspeed liquid injection

t=15.47

t=11.33

Summary of study 1

- High-speed liquid fuel injection
 - Atomization characteristics and mechanisms identified in this configuration
 - Modeling study underway
 - Investigation of sprays of other configurations
 - Impingement injector, wind wave, air-blast atomizer, etc.

Two-liquid mixing for a rocket-engine injection element

2. Spray combustion study

- Vapor mixing and early flame kernel development -

Background

Droplets and group combustion

Single droplet combustion
Internal group combustion
External group combustion
External sheath combustion

• In real sprays, however, the combustion mode is not well understood.

Group combustion diagram by Chiu (PCI 1982)

FIG. 1. Four group combustion modes of a droplet cloud.

Previous work in the literature

•Eulerian-Lagrangian simulation Turbulence scale >> droplet scale

Fig. 1. Initial gas velocity vectors and distribution of droplet locations (only 5% of the velocity vectors are shown for clarity).

Wang & Rutland (PCI 2005)

•Gas-phase autoignition ➢ Ignition occurs at small SDR

Viggiano (CNF 2010)

Fig. 12. Temperature fields by using the 30-step mechanism and different values of fuel stream velocity, in the case T_w = 800 K and T_z = 300 K, at the times when T_{max} is equal to 1200 K (on the left) and to 1700 K (on the right).

Fig. 2. Temperature contour at t = 0.891 ms for the T = 1300 K case (black = 1300 K; white = 2000 K).

Previous work in the literature

- Simplified droplet array
 - Flame spreading mode analysis

Mikami et al. (CNF 2005)

Detailed measurement/computation possible

➤Gap with the real sprays (scale, turbulence effect, etc.)

Objectives and approach

- Investigate autoignition of "dense" spray region using the previous droplet atomization data
 - Path leading to group combustion
 - Droplet distribution and number density
 - Gas-phase turbulence
 - Droplet shape effect
 - Find input to modify current models
 - Detailed simulation with evaporation, mixing and reaction
 - Flow field around each droplet is resolved
 - Computational domain is limited to small scale

Computational setup

- Domain fixed on the head
 - Small spatial and temporal scales
 - "Flame" cannot be simulated, but early flame kernel development can be captured.

- •900K ambient air from $\hat{t} = 15.47$ •30atm
- •Equilibrium evaporation
- •n-heptane (C₇H₁₆) global one-
- Gas step reaction (Westbrook & Dryer, CST 1981)
 - Physical properties from NIST data
 - •2.2 billion grid points

Nozzle	Ambient	Air density	Liquid	Air	Liquid	Liquid	Air	Liquid	Air	Surface tension
diameter	pressure	$ ho_{g}$	density	temperature	temperature	injection	initial	viscosity	viscosity	coefficient
D_N	p	0	$ ho_l$	T_{g}	T_l	velocity	velocity	μ_l	μ_{g}	σ
				5		$U_l = U$	U_{o}		5	0
0.1mm	3MPa	11.5kg/m ³	848kg/m ³	900K	300K	100m/s (Lab frame)	0m/s (Lab frame)	2.87e-3 Pa∙s	3.90e-5 Pa∙s	30.0e-3 N/m 27

Numerical methods

- Navier-Stokes equations
 - Density, velocities, temperature and chemical species
 - Compressibility included (perfect gas equation of state)
 - CIP for advection terms
- Level-set interface capturing
 - Combined with VOF-type method for volume conservation
- Evaporation
 - Equilibrium evaporation
 - Jump condition at interface
- Chemical reaction
 - One-step global reaction of n-heptane

Flow field

• Recirculation zone behind the head

Color: droplet number density (1/m³)

*2D slice image makes the impression that the number of droplets is small.

Mixing of vapor/air

Region A

*Evaporation starts at $\hat{t} = 15.47$

Mixing of vapor/air

Region B

*Evaporation starts at $\hat{t} = 15.47$

Mixing of vapor/air

0.000

0.015

a 0.007

3.0E+07

0.0E+00

0

 Strong correlation between mixing and vorticity • Faster mixing in region B

3.0E+07

0.0E+00

*Evaporation starts at $\hat{t} = 15.47$

Droplet/turbulence interaction

• Droplet/turbulence scales

Droplets (gray) and eddies (Q-isosurface) near region B

Slip velocity exists between droplet and gas
Vorticity generation (eddy diameter~8-12 η)
Global energy feed from liquid to gas

Vorticity around droplet

•Wake interaction is stronger in region B •Mean inter-droplet distance: (A) $l=7.9D_{32}$ and (B) $l=3.3D_{32}$ $l \sim n^{1/3}$

Formation of vapor clusters

Fuel consumption rate (mol/cm³/s)

Cluster formation

Initially Clus *Red shows the high reaction rate, but this is still not a "flame"

Formation of vapor clusters

Note that the reaction rate magnitude is small at this early stage. *Red shows the *relatively* high reaction rate, but this is still not a "flame". *Also note that the spatial scale is much smaller here.

36

Formation of vapor clusters

Group combustion number

In region B,

$$G = 2\pi n D_{32} R_c^2 = 5.7$$

With
 $R_c = 0.25 D_N$
 $n = 3.4 e14 m^{-3}$
 $D_{32} = 4.3 \mu m$

External Group Combustion

- •Mixing by droplet-generated vorticity
 - •Spherical and non-spherical droplets
- Inter-droplet interaction

•Especially for high number density

FIG. 1. Four group combustion modes of a droplet cloud.

Scale extension

Based on DNS...possible by using a larger computer system such as "K"-class system)

•Spatial scale

•At least, the primary atomization region should be covered.

~100mm程度

•Temporal scale

•It is still far short compared to the ignition delay time.

1E-06

8E-07

6E-07

4E-07

2E-07

10

≻ੂ

C7H16

H2O2

0.002

он

Y_{KET}

0.0015

0.08

0.06

0.04 '

≻

Ľ

H202

H16 5

Outlook

• Combustor scale simulation

We will return to the initial starting point...

...but with more knowledge of physics and modeling of spray and flame

Summary of study 2

- Atomization data extended with evaporation, mixing and reactions
 - Droplet/turbulence interaction is very important in mixing
 - External group combustion expected in dense region
- Modeling
 - Must include the above effect
 - We are working on this now
- Others
 - Detailed reaction mechanisms
 - Spatial/temporal scale extension

Thank you!